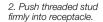
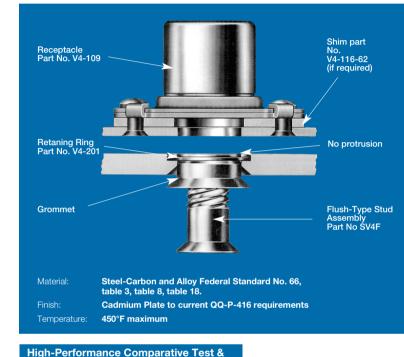
Ketema

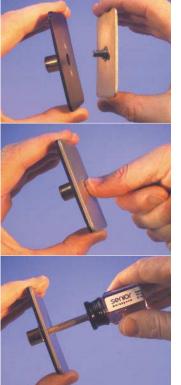
USH-TYPE FASTENER STANDARD FLUSH-TYPE FASTENER STANDARD FLUSH-TYPE FASTENER, S


From pre-fabricated buildings to space applications, no fastener offers the ease of use, strength and unprecedented performance of Zahodiakin fasteners.

*These positive-locking fasteners are the most rapidly-threading fastener on the market. this makes them ideal for applications requiring quick and convenient access to panel areas without sacrificing the strength of the connection.

The Zahodiakin fasteners unique foolproof design is characterized by its ability to synchronize the fastener stud with its receptacle. Misalignments are automatically corrected and there's never a cross-threading. Just place the two parts together, push, and give a half-turn with a screwdriver to complete a positive-locking, high-strength connection. In seconds.


Initially designed to secure access doors, panels and structural components under the most critical aerospace conditions, Zahodiakin fasteners have never experienced a field failure in more than 50 years of manufacture. Today, both commercial and military fastener products are available, with the military line designed to meet or exceed Mil-F-22978A (ASG).


3. A half-turn with a screwdriver completes

positive-locking connection. Total time: a few seconds.

Performance Data									
Mechanical Properties	MIL-F- 22978A	Measured Performance							
Locking Torque (lbs)	30 Max	30 Max							
Unlocking Torque (lbs)	35 Max	35 Max							
Torque Out (lbs)	100 Min	100 Max							
Ultimate Shear Load (lbs)	4650	8300							
Rated Shear Load (lbs)	3560	4500							
Ultimate Tensile Load (lbs)	2210	4500							
Rated Tensile Load (lbs)	1700	1700							
Sheet Separation @	.015	.013 1700 lbs(ins)							
Sheet Pull-up (in)	1/16	1/16							
Stud Push-out (lbs)	150 min	200 min							
Receptacle Pus-Out (lbs)	125min	130min							
Vibration Requirements	Para 4.6.8	Exceed Spec.							
Misalignment Float (in)	=.020	±.020							
Elevated Temperature Limit (°F)	450	450							
Corrosion resistance (hours)	96	200							

USH-TYPE FASTENER STANDARD FLUSH-TYPE FASTENER STANDARD FLUSH-TYPE FASTENER, S

TO ORDER

Order by part number and description, Stud Assembly SV4F - (Stud number), Receptacle Assembly V4-109, Retaining Ring V4-201 and Shim V4-116-62.

Part Number		Weight (lbs)	Part Number		Weight (lbs)	Part Number	Grip Range	Total Weight (lbs)	Part Number	Weight (Ibs)	Grommet Length	
Ketema Stud 1 Assy.	Ketema Retainer Ring	MS Stud Assy.	Stud Assy.	Ketema Receptacle	MS Receptacle Assy.	Receptacle Assy.	MS 2 Fastener Assy	T1+T2	Fastener Assy.	Shim (if required)	Shim	Total Length ± .010
SV4F-1	V4-201	MS 17731-1A	.011	V4-109	MS17731-21	.028	MS 17731-1	.150220	.039	V4-116-62	.0026	.200
SVAF-2	V4-201	MS 17731-2A	.012	V4-109	MS17731-21	.028	MS 17731-2	.221290	.040			.200
SVAF-3	V4-201	MS 17731-3A	.013	V4-109	MS17731-21	.028	MS 17731-3	.291360	.041	NOT REQUIRED		275
SVAF-4	V4-201	MS 17731-4A	.016	V4-109	MS17731-21	.028	MS 17731-4	.361430	.044	(if part number V4-116-62 9		.350
SVAF-5	V4-201	MS 17731-5A	.017	V4-109	MS17731-21	.028	MS 17731-5	.431500	.045	(shim) is used, deduct		.425
SVAF-6	V4-201	MS 17731-6A	.020	V4-109	MS17731-21	.028	MS 17731-6	.501570	.048	.062 from min and max.		.500
SVAF-7	V4-201	MS 17731-7A	.022	V4-109	MS17731-21	.028	MS17731-7	.571640	.050	grip range dimension)		.575
SVAF-8	V4-201	MS 17731-8A	.024	V4-109	MS17731-21	.028	MS 17731-8	.641710	.052			.650
SVAF-9	V4-201	MS 17731-9A	.025	V4-109	MS17731-21	.028	MS 17731-9	.771780	.053			.725

MS 1 Stud, grommet and retainer ring

Receptacle Assembly

0.400 ± .000

T₁ = Outer Panel

T₂ = Inner Panel

H = Total Length of Grommet

(see table)

C = H - T₁ = Shear VAlue in Sheet 2

A = Head of Grommet - Constant at .060

When (T₁- A/2) greater than C, c' bore T₁ When (T₁- A/2) greater than C, c' bore T₂

Example No.1

Assume Stud Assembly SV4F-2 is being used, with T1 being 0.102 in. and T2 being used 0.158 in., "A" is .060 in.

1. Compute Value of (T₁ - A/2): $(T_1 - A/2) = .102 - .060/2 = .072$

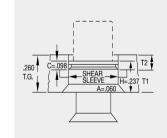
2. Compute Value of "C":

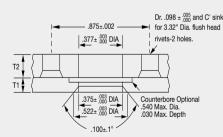
 $C = H - T_1 = .237 - .102 = .135$

Referring to the formula above: (T₁ - A/2) is less than C; therefore, Sheet T2 is to be counterbored.

Example No.2

Assume Stud Assembly SV4F-2 is being used, with T1 being 0.125 in. and T2 being used 0.135 in., "A" is .060 in.


1. Compute Value of (T₁ - A/2): $(T_1 - A/2) = .125 - .030 = .095$


2. Compute Value of "C": $C = H - T_1 = .237 - .125 = .112$ Referring to the formula above: (T₁ - A/2) is greater than "C"; therefore, Sheet T₁ is to be counterbored.

Example No.1

MS 2 Stud, grommet, retainer ring and receptacle

Example No.2

- Notes:
 1. Float of receptacle shall not be less than .020 in any direction from the center position.
- 2. Dimensioning and gaging of the above recess shall be in accordnce with Military Standard Drawing MS 9006, Cross Recess and Gage
- 3. For complete assembly of Stud Assembly, Receptacle Assemble and Retaining Ring No. V4-201.

Senior Aerospace

Ketema

790 Greenfield Drive El Caion California 92021

Tel.: +1 619 442 3451 Fax: +1 619 449 1456

E-mail: marketing@sfketema.com www.senioraerospace.com/ketema

